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Abstract

A method for calculating the periods of free oscillations in a
closed basin of oblong form is described. The equation of motion
(6), (3) is put in the form of an integral equation (8). For the
approximate calculation of the eigen-value this equation is
replaced by a linear homogeneous equation system (12). Finally
the eigen-value can by the aid of a computer be obtained from
the matrix equation (15). Approximate values for the main
period and for the first few harmonics of lake Pyhé#jérvi in Fin-
land have been calculated. The distribution of the vertical dis-
placement along the lake for the uninodal seiche is presented in
Fig. 1. The position of the nodal-line and the values of the periods
received here agree very well with those obtained by the con-
ventional methods.

1. Introduction

When the water-masses in a lake basin, once the equilibriun is dis-
turbed, oscillate back into equilibrium position, we observe periodic
fluctuations of the water-level. These oscillations are known as »Seichesy,
DrranT [1].

The problems conunected with free oscillations (seiches) in closed
basins of an oblong form but of variable width and depth have been
the subject of very complete theoretical investigations. Almost all of
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these theoretical considerations only apply for such basins where there
are no components of the horizontal motion in a direction perpendicular
to the long axis (z-axis) of the lake or to the so called »Talwegy, a line
connecting the lowest points of the bottom of the lake, respectively.

2. Fundamental equations of seiches

The equation of motion has the form

5% an 1
PR A V )

where g is the acceleration of gravity and & is the horizontal displace-
ment for the water particles in the x-direction, at the time £, when the
ordinate of the free surface corresponding to the abscissa, at the time
t, isnoted by h -+ 5, where kb is the ordinate in the undisturbed state.
The equation of continuity can be written in the form

1 0
== 5 3 5@ (2)

if b(x) and S(x) are respectively the variable width at the surface and
the variable cross-section of the lake at the point . The boundary
conditions, neglecting the friction, are

E=0 forza=0 and z=1, (3)
where [ is the length of the lake.

If we introduce # from the equation of continuity into the equation
of motion we obtain

0% 8( 1 0 )
# = 3\bw) 5 (S(z)é) (4)
which if
E=r(x) sin (wt-} &) (5)
is transformed into
a ( 1 78 r ) w?

with the same boundary conditions as before.
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3. Solution of the eigen-value problem

a. If we put
yla) = S(x) & (7)

our problem can be stated with the aid of an integral expression as
follows:
2

w?
y(x) = rl /K(w,t)f(t) dt, (8)
where
y(t)
f@) = S0 (9)
and the kernel
( u()
[u(t) 1— ?a(_l)> for 0 <t<uw
Kz ,t) = . (10)
lu(m) \1 — Z%), for o <t <l
with
. .
u(x) = fb(t) dt . (11)

0

For the approximate calculation of the eigen-value w the graph of
the function K(z, ) f(f) is assumed to be replaced by an inside broken
line the number of sides of which is 2" where = is an integer. The
argument values ¢, which correspond to the corners of the broken line
are located between 0 and ! equidistant, StrerFEL [4]. The area of the
surface under the graph, which is the same as the value of the definite
integral in question, is replaced by the sum of the frapezoids and the
equation (8) is then replaced by a linear homogeneous equation system
as follows, Sara [2] and [3]:

My = AgK(;, 0)f(0,y,) + A1 K(;, ) f(E1, Y1) +
A K(z;, 89) [l 5 Yo) 4+ - + Aan(mi SOfC, ) (12)
1=20,1,2,...,2"
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where

™o
f
|

(13)

8’.\')

and

1l 1
== ?;AOZ‘ATL: 2n+1;

1
AI:A?,:"':AQ"—].:_

X 2!1

(14)

By equating the determinant of that equation system to null we get
an equation whose roots are the approximate values of the natural
frequencies w of the lake in question. One can, moreover, obtain better
approximate values for o from the equation system (12) with two or
more successive values for n . Thus one can also get an estimate of the
accuracy attained.

The problem in question can be put in the form of a matrix equation

Ay = BDy. (15)

There B is the matrix whose elements are the 4 K-values in the equation
system. (12). This matrix is symmetric while D is a diagonal matrix of
the values 1/S..

b. If we like CERYSTAL [1] introduce in the equation (4) the variables
(5), (7) and (11) and if we put

S(z) b(x) = v(x) (16)
we obtain

Py w? _

du2+5;?/=0 (17)

with the boundary conditions
y=0for u=0 and v =a, (18)

where ¢ is the entire surface of the lake.

The eigen-value problem (17), (18) can be put into the integral form
(8) where now, if the integration interval is normalized to the value
@ = 1, the kernel is

X {t(l—u), for 0 <t <w "
u,t) =
.1 (I—tu, foru <t <1 (19)
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and

4. An application of the method presented above

101

(20)

Phil.lic. Pentti Malkki has in his treatise!) on seiches of lake Pyhéjarvi
in Finland obtained an average value of 7'; = 95.1 min for the main
period and 7'y = 50.7 min and 7'y = 36.4 min for the first two harmoniecs,
respectively. These values have been calculated with the conventional
methods. Mr. Mélkki has kindly given me the material of his investigation
(Table 1) and I have treated them with the method presented above.

Table 1. Values of the length x, the width b, the cross-sectional area S and
the surface area u of lake Pyhéjérvi in Finland.

0N TR W N O E‘@

RO DO DN DD DD e b et e e b e e
B WO WO WO 0 W N D

25
25.2

b
km

2
4.360
4.840
5.780
6.160
5.860
5.680
6.160
7.260
7.720
7.920
7.760
8.320
9.000
9.200
7.700
7.140
7.640
7.260
6.540
6.000
5.240
3.500
2.200
1.520
0.460
>0

S

m?2

0
18400
22800
31600
33600
32000
30800
33200
37600
39200
36400
39200
42400
47600
49200
48800
47200
58800
51200
41600
29200
21600
14000
6400
2400
800
0

1) lie.-exam. at the University of Helsinki.

W

km?

0
3.840
8.460
14.100
20.250
26.190
31.930
37.860
45.080
52,710
60.550
68.350
76.480
84.970
94.150
102.410
109.920
117.640
124.980
131.650
137.900
143.240
147.400
150.010
151.760
152.314
152.360
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a. When we at first use the method in point 3 a and choose

; on g S_ o
T owla’ (21)
where § is a constant, e.g. the area of the biggest cross-section of the
lake basin, and « is the entire surface of the lake, we get the lower
triangle of the symmetric matrix B in the form

(22)
_al(l — @)
a(l —a ay(l — @
The lower i 2 ? 2
triangle of (1 —dag)  ay(l— ay)
the sym- | -
metrlle a(l—a;) a(l—a;)...a(l —a,)
matrix B .
l}/l(l — axzn_l) Cl;z(]. — (1’2"ﬁ1) a,-(l — ("2"—-1) [ alznkl(l — ((’2”41)
with the dimensionless parameter
i 23
a; = @ (23)
and the diagonal matrix
lsy 0 |
Sg
83
D — . (24)
0 Sqn_1
where
s 25
'Si - S ( )

also is a demensionless quantity.
In the case of lake Pyhéjérvi the length of the lake basin is [ = 25.2
km, the entire surface of the lake is a = 152.36 km?, the constant S =
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58800 m? and the acceleration of gravity ¢ = 9.82 m/s? According to
the equation (21) then

2"+ 9.82-5.88
w’s* - 2.52 - 15236 - 10°

A=

and the period of the oscillation in minutes is

T 2n k vV A k= 270.0356 26
T 60w 4/ T T T (26)

If we choose n = 1 equation (15) gives

' u, | u\ S
My = g(l — E)S_lyl
where %, = 81.574 km? is the area of the surface of the lake from section
0 to the middle section (z =1/ 2) and S, = 45520 m? is the area of the
cross-section of the lake basin at the point 2 =1/2. Thus we get 1=
0.5354030 - 0.4645970 - 1.291740 = 0.3213159 and 7' = 108.236 min ~
108.2 min. The value n = 2 gives for the main period the approximate
value 7', = 99.7 min and for the first two harmonics the values 7', =
53.8 min and 7', = 43.8 min, respectively.

With the aid of our method the values of 7'y = 96.48 min, 7T, =
47.89 min and 7'y = 35.93 min are obtained when the length of the lake
was divided into 8 equal parts i.e. n = 3, and with n = 4 the values
95.54 min, 46.56 min and 33.98 min, respectively. There is good reason
to suppose that the sequence of the approximate values given with the
successive values of n for the same period converges linearly with the
ratio 1/4. Thus the expression 7', + 4 (T, — T',_,) gives the improved
approximate value 7' = 95.2 min for the main period.

The values for « and S used by the author were, with a modulus of
1 km in the x-direction, determined by Mélkki with the aid of maps.
Therefore numerous interpolations had to be used in this investigation.
When the values of % and S are from the beginning determined at the

4l

points x; = g7 one only needs a minimum amount of preliminary

n

calculations to get the matrices B and D in the equation (15).
b. The method in point 3 b with

2°" g
w?a?
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gives for the lower triangle of the symmetric matrix B the following

form

The
lower
triangle
of the
sym-
metric
matrix
B

and the diagonal matrix

o1
"—2 9(2"—2)

2"—3 2(2"—3) 3(2"—3)

0 i 92'—i) 32 —i)
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(30)

(31)
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and when n =4

(32)

715 14 13 12 11 10 9 8 7 6 5 4 3 2 1]
14 28 26 24 22 20 18 16 14 12 10 8 6 4 2
13 26 39 36 33 30 27 24 21 18 15 12 9 6 3
12 24 36 48 44 40 36 32 28 24 20 16 12 8 4
11 22 33 44 55 50 45 40 35 30 25 20 15 10 5
10 20 30 40 50 60 54 48 42 36 30 24 18 12 6
9 18 27 36 45 54 63 56 49 42 35 28 21 14 7
B—| 8 16 24 32 40 48 56 64 56 48 40 32 24 16 8
7 14 21 28 35 42 49 56 63 54 45 36 27 18 9
6 12 18 94 30 36 42 48 54 60 50 40 30 20 10
5 10 15 20 25 30 35 40 45 50 55 44 33 22 11
4 8 12 16 20 24 28 32 36 40 44 48 36 24 12
3 6 9 12 15 18 21 24 27 30 33 36 39 26 13
9 4 6 8 10 12 14 16 18 20 22 24 26 28 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In spite of the fact that matrix B is the same for any one of all the
lake basins the solution of our proble based on the equation (17) is inferior
to the solution based on the equation (6) in point 3 a. It is so because
the calculation of the element in the diagonal matrix (29) is rather
laborious and because of the fact that there is « instead of 2 as the
argument so it may cause some inaccuracies in the results. Calculations
with this method have not been made by the author.

5. The vertical displacements of the seiches

The relative magnitude of the vertical displacement, caused by the
oscillation, can be calculated in the following way. Equations (2) and (7)
give

=73 - (33)

The Electronic Digital Computer gives in the form of the sequence
YisYssYsr-rvsWise-o>Yomy bhe relative values of the eigen-vector.

da
If we put into the equation (33) the values b; and substitute for d—;
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A 1
the expressions A—i by (%41 — Y1) and take into consideration that
Ax = x; — x;_; is constant and therefore has no effect upon the relative
values of 5 we get

o Y Y
;= 2b

i

1 4=1,2,8...,2"—1.

The curve in Fig. 1 presents the relative vertical displacement 1 of
lake Pyhéjérvi according to the main period and obtained by the method
mentioned above. As it can be revealed the nodal-line is located at the
point x =~ 0.41. The value n = 4 gives x ~ 0.421. They are in good
accordance with the value =~ 0.44 [ obtained by Milkki.
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Fig. 1. Relative vertical displacement u according to the uni-nodal seiche in
lake Pyhd&jéirvi in Finland.
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