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ON A MODAL APPROACH TO WAVE PROPAGATION IN A
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Abstract

In this paper modal aspects to wave propagation have been
treated in case of a model consisting of a laterally homogeneous,
isotropic and rate-type viscoelastic halfspace, which is inhomo-
geneous vertically downwards. As a result from the lateral
homogeneity the mode pattern describing the oscillations of
the model above ought to be invariant with respect to the
group of motion of the Euclidean plane. The invariance gives
new possibilities in obtaining the solution of the problem.

Iniroduction

Instead of beginning this article with a list of the many contributions
to the modal treatment of seismic wave propagation in a halfspace to
be found in the literature, I refer the interested reader to the classic
book by Ewing et al. [2] and to the papers by GILBERT [3] and by Cocr-
RAN et al. [1] with the bibliographical references given in these works.

Here I shall apply modal analysis to the problem of seismic wave
propagation in a laterally homogeneous, isotropic and rate-type visco-
elastic halfspace, taking into account the interaction of the group of
motion of the Euclidean plane.

To this end use has been made of the Laplace transformed equations
of motion (1) and (2) presented by SAASTAMOINEN [4].
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op™u = trp(9,T) + £ (1)
T = 2 tr(d,u)1 + a(2,u + ,u”) @)
In (1) and (2)
— X€ N3 (€ means »belongs ton), wheré % is the Buclidean three space.
— 0, 2 and 4 €N are scalar fields on R3. Further, 4 and 4 are
certain polynomials in the transform parameter » .
— u and £ €V are vector fields on R3.
— T and 1 €L(V,V) are tensor fields on R® with 1 as the unit
of I(V,V).
— tr;, means the contraction of the first two vectors following in a
tensor product.
(For further details about equations (1) and (2) see the paper by SAASTA-
MOINEN [4].

The modal equations
In what follows equations (1) and (2) will be decomposed into a
system of four coupled equations. Two of these have their values in

the two-dimensional vector space V formed on the plane %2, which
lies parallel to the surface of the half-space. The other two have their
values in the one-dimensional vector space V;, which forms the ortho-

gonal complement of Vin V. Asa consequence,
V=V, @V and LV, V)=LV, @ V,V,® V) (3)

where @ refers to the orthogonal direct sum.
To achieve the decomposition described above, we take an arbitrary
constant vector a and split it according to (3) as follows

a=—Ade-ta (4)

where e is the unit vectorin V;, 4 = (a,e) ((., .) is the scalar product

in V) and a is the projection of a in V. Furthermore, the scalar
product of (1) with a results in

op*(u,a) = (try,o,T,a) + (f, a) (5)

The different terms in (5) will be decomposed with the aid of (4).
Consequently, first

(uaa’)=U-A+(ﬁ:a) (6)
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where U = (u,e) and @i is the projections of u in V. Secondly
use of the auxiliary relation

(try2 9, T, a) = (3, T[al, 1)1y, (7)
yields
(b0, T, 8) = 4 0.P - (3,8, 8) + A te(2 §) + tr(2,T[A])  (8)
In (7) (-, D, is the scalar product in L (V, V) (see SAASTAMOINEN
[4]). In (8) P = (T[e],e), (t,a)= (a,Tle]) and (3, T[d]) =
(a,T[a]). Proceeding as above we find the last term

t,a) = FA4 4 {,a) (9)

where F' = (t,e) and 1 is the projection of f in V. Asa consequence
of (5), (6) (8) and (9), we obtain the decomposition of (1) given below.

0p?*U = 3,P + tr(04f) + F (10)

0P = 3.t + tryy(0,T) - 1 11)

Since later we use only the Fourier-transformed versions (10)’ and
(11)" of the above equation, the application of (A12) to (10) and (11)
results in

0p*Ui = duPy -+ k(KO , 1) + P, (10)’
0P = duty + ko trp (R0 @ Ty) + fi a1y

where quantities with the subscript & belong to the space L0y .
For the decomposition of equation (2), we need the two arbitrary
constant vectors

a= Ade-}-a and b:Be—I—% (12)
Thereafter we form the bilinear products
(T{a], b) = ABP 4 A(t, b) 4+ B(@, t) + (T[4], b) (13)
and
(T[a], b] = A(tr(2,u) 1 [a], b) -+ (2, u -+ d,u")[a], b) (14)
where

tr(a,u) = 9,U - tr(d,1) (15)
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As to the individual terms in (14), the use of (12) and (15) shows that
(tr(o,u) 1 [a], b) = AB(@ U + tr(3;01) + ((3,U -+ tx(3; ) &, b) (16)
and
(3u + 2,u”) [a], b) = 24B2,U + A(3,i + U , b)
+ B@, 0,0 + 2,8) + (240 + 9,87 [4] , b)

Finally, comparison of (14) with (13) (supplemented with (16) and (17)
yields the decomposition of equation (2) given below

(17)

= (A + 20) ,U + Atr(9,0) (18)
t = a2 + 2,0) (19)

and
T — 20,01 4+ Ate(2:0) 1 +7 (90 + 2507 (20)

As before the application of (Al12) to the equations above results in
the Fourier-transformed versions

Po— (A + 20) dUsx + A k(K , fis) 18y’
te = ji dofis + FkKOU, (19’

and
e = A0 T 1 + Ak, f) 1+ 7 k(k® @ e + e @ k) (20)
Equatlons (10), (11)’, (18)’, (19)" and (20)', however, contain the term

Te , which is not compatible with the boundary conditions. To eliminate
it later we form from (20)" and (18) relation

R T ' piveid+ ik k0, i)k @ 1 +
E = ~ ~ Lk ~ ~ > Uk
A+ 2u A4 2un (20)”

b0 @ k0 @t + k0 ® 1t @ k)

Radial and transverse parts of the modal equations

When the system (10), (11) (supplemented with (20)”) (18) and
(19)" is projected in the two mthogonal directions kO and k° (k° k") =0,
in cases of lateral homogeneity, k° and kf'L correspond to the radial
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and transverse directions), we obtain the two useful systems of equations.
— The radial part

Ak 1
flek=_~ ,,Vk"l“*’ ,.,-Pk
A 2u A+ 2u

.V U 1R
dVe = — k‘l‘ﬁ % @1)
Clek:szUk—kRkMFk

45(h -+ ) B2 A
dek:(sz—ﬂ:L@*)Vk—~ ~P1.~,——Fk

A4 2u A+

2u c
where Vi = (s, k%), RBe= (b, k% and Fy= (f,Kk?. (The other
G

quantities have been defined previously.)
— The transverse part

1
Wi, == 8,
s

(22)
@Sk = (ep* — pk*) Wy — I\,

where Wi = (i, k%), S = (&, k) and Fp= (,, k2).
R
To simplify subsequent manipulations we present (21) and (22) in
the compact form

dape = Awyr + fr

(23)
In (23) w and & € L (C)), 4w € L(ZH0,) , %iC,)) (the space linear
transformations on <£;(C,)) . Further
— The radial part
A 1
Uk 0 0 = po =
A+ 2u A+ 2u
1
= |, fe and 4, = “ | (24)
Pk — F;; sz 0 0 k2
~ 9 N2 7
Ry — 0 gp2—4”(~l+‘ff)k—~l~ 0
G 2+ 2u A2u
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— The transverse part

1

Wi 0 il
K ep® + uk? 0

The boundary conditions

The boundary conditions as usual express the vanishing of the stres-
ses abt the free surface (x = 0) and the vanishing of the displacements
below some reference depth (z = z,). In other words,

Woyr(0) + Woyn(ze) = 0 (26)
where
— For the partial part
Wo = (0 9) and W, — (1 0) @7)
01 00

where 1 isthe 2 X 2 unit matrix.
— For the transverse part

Wy = (g (1)> and W = ((1) 8) (28)

Solution of the problem (23) and (26)

Since the solution of a similar boundary value problem was treated
in greater detail in the paper by SAASTAMOINEN [4], only some trends
will be given here.

According to the paper mentioned above, the solution of (23) and
(26) shows the following time depence

. Top
LC 0

where LC is the Laplace contour and

Yilp, o) Dyt (p) Wo Y (p, 8)3E <z

“lr.w, 8 = {— Yi(p,2) Do) W, Vit (p, 8) 620 O

The operator Yi(p , &) in (30) is the solution to the initial value problem
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@Y= A Tn; Yi(0) = I (31)

where [ is the unit of L(Z}(C,) , £%C,)). Further,
Di(p) = Wy + W, Yi(z,) (32)

is the characteristic matrix of the problem.
The evaluation of (29) with respect to the contributions from the
poles on the different Riemann sheets of

det Di(p) = 0
results in the long-time approximation
(33)
o, 1) =2 3, e [ Yalwilh) , 2) Res Bu(p) Vi (pi(8) , &) films(h) , £)dE
p=p;(¥
where

-1

Res Ri(p) — [ f YEH0E) » €) 5 Aulp , &) gy Telrs(®), 81BE| (38)

p=pj(¥)

Because of the length of the expression (33), we introduce the auxiliary
operator  Mu(p;(k) , x) € L(£(C,) , LiCL)) by
(35)

x

My (k) , ) fulyl) = f Yi(p; (k) , %) Res Yil(p; (k) , £) fulps () , &) dé

p=pj(k)
Thus, instead of (33), we may write

yu(@ , 1) = 2 A Mi(pj(k) , @) fulps(k) (36)

The effect of the group of motion of the Buclidean plane on (36)

Because of the commutation relation
Ti(g)Ar = Ar Ti(g) (37)

there is no 1nteract10n between the representation T;,(g) , and Ay,
Consequently, Tk(g)y;, is the solution of the boundary problem

Ti(g) ) = Au Talg ) 9k + Tal(g) f (38)
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and for this reason the use of (36) results in

Tughye (@, 8) == 3, 5O Mi(py(k) , @) Tulg)fuls(F) (39)

The relation (39) shows how the projection Zv’k(g)yk of fi‘gy be-
haves in the invariant subspace Li(C;) of L2(R?2). Thus, the use of

i’gy = Qn/kdk ’./v’k(g)y/; (40)
gt
(see (A18)) enables us to obtain the solution
Ty = 2 [ Kl S Milpl) ) Bl (o) (4)
i
at
in LR .

For the matrix elements of fgy we see that the expansion of (41)
with respect to the basis (A19) supplies us with the series development

y@,a,t) =2 f kdr > eri® h(0) My 'ﬁf;"f,;” (42)
ot !
where a repeated index refers to the summation from — oo to + .

Further, M = (b", Mu(p;(k), x)h') £1C) and fi' = (A", fi, (p;(k)) £ic) -
{B™(0)} is the basis (A19) at the value ¢ = 0. (A24) shows in turn that
the translational part (i.e. 0 = 0) of 7% is of the form

TZn — ,i'""—l 6i(m—l)xp Jm_z(k“)

where J,,_,(ka) , is the Bessel function of the order m — I.

Conclusions

The procedure above yielded first the modal expansion (36) valid
in the invariant subspace <£;(C,) . Afterwards the use of the interaction

v

of the boundary value system with representation 7% equipped us with
the solution in (42), which is valid throughout the space L*R?).

The reader who is seeking guidelines for the numerical determina-
tion of Y} is referred to the study by SAASTAMOINEN [4], where some
aspects concerning the numerical determination of Y, have been treated
in the case of a spherically symmetric problem.
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Appendix
The growp of motion of the Huclidean plane

The representation of the group of motion of the Euclidean plane
N2 are sought in the spaces L2R2) and Li(0;), which are defined
below.

L2(RN2) consists of the complex, square-integrable and LXR2) =
> @ LX(R?) -valued functions on $?*. The summation over (now and

later) goes from one to four in the case of radial modes and from one
to two in the case of transverse modes. For the scalar product and the
norm in L2(R?), we define

— The scalar product in <£%(H?)

(=, ?/).,L‘*(sn*) = Z (25 Yi)ro e (A1)

where z and y € L%R?) and z and y; € L¥(R?).
— The norm in L2(R?)
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2
Iy ) T Z (W) lzamey > (A2)

In (Al) and (A2) the terms (%, ¥:i)wgs and |yl represent,
respectively, the scalar product and the norm in the space L*($?) (com-
plex, square-integrable functions on $?) and are defined below

— The scalar product in L*R?)

(s )y = f 2 (R)yR)IR (A3)

ml

— The norm in L*MN?)
o = f g (Rp(R)% (A4)
mﬂ

The space L;(C;) corresponds to the complex, square-integrable
and Zi(C,) = Z @ Li(0,) -valued functions on the unit circle (C;) and

is defined with the aid of the scalar product and the norm given below
— The scalar product in <£3(C})

(% 5 i‘/k).,z.‘,g(cl) = Z (% » yki)L;(cl) (A5)
— The norm in £}(Cy)
“?/k”,rkﬂ(cl) = z (7% 13(C) (A6)

The corresponding quantities in the component spaces Li(C,) are de
fined in accordance with (A3) and (A4) as follows

27

1
(ki , ?/ki)z,;c(c,) = % f Z;ﬁ(‘?)?/ki (p)de (AT)
0
— The norm in Li(C})
25
1 . A
rillyzcy = %7 f Yii(9) Y@ (A8)
0

For the treatment of the group of motion of the Euclidean plane,
we follow in this paper the procedure adopted in the monograph by
ViLENKIN [5].
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The group in question consists of the rotations and translations in
the HEuclidean plane %2. In other words

gX = tat X (A9)

a’e

where #, rotates X from %2 by the amount of the polar angle 0 and
t; correspondingly translates X from 92 by the amount of the vector
a.le.

~

bx=%X-+a (A10)
We {first define a representation 7', in £2%R?2) by
(Tey) (X) = y(g™'%) (AL1)

where ¢! is the inverse of ¢g. The present paper, however, is con-
cerned with the Fourier-transformed version of 7. Therefore in-
troduction of the Fourier transformation

A 1 ”a
- i(R%), 3\ T .
y(kK) = 2n/e y(X)dx (A12)
e
(no confusion should be caused by the use of the same letter y on both
sides of the transformation) makes it possible to define the Fourier
equivalent 7, of 7, by

v ~ ]. L AA N .
() (k) = 5 [ ## 7, y (a5 (A13)
2

Fuarther, as a result of using (A9) together with the invariance of dX
with respect to g, we obtain instead of (A13), the more explicit form

(Tey) (k) = &3y (_ k) (A14)

(A14) shows in turn that 5’g induces the representation Tvk(g) in £(C))
by

Th(g)yn(k®) = @D g, ko) (A15)

where i{o is the unit in the direction of }2 .

v

To see how 7, and 'ﬁk(g) are interrelated, we take arbitrary
y € L%R?) and form decomposition
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P (A16)

ant

where R+ is the positive real axis. As a consequence of

LK) = 2nfkclk EAA(0N (A17)

Rt
Finally, using the fact that i’g y € L2(N?), (Al6) and (A17) also show
Ty — 9 f kil Th(g)u (A18)

nt
For the matrix elements TV,'C"" of fi’k(g) , we introduce the basis
e =™ (A19)

into 4;(0;) and express (Al5) in the form ,

Tig)yulp) = "¢~ T () (A20)

In (A20) ¢ and v are the polar angles of ko and & , Trespectively.
T, in turn is the representation of the rotation #, in %(C;). Finally,
we define the matrix elements by

TE" = (0", TWg)™) gec) (A21)

Accordingly, the substitution of (A20) into (A21), together with the
use of the relation 7' A" = ¢™?=9 | gives

27

v 1 ) . :
sz — %felku cos ((p—y;)+1(n14n)q;e~1med¢ (A22)
0

From which after the change ¢ =% -y —a of the indepedent
variable

27

v 1
sz — ei(m—n)gei(m~n)y;e-—ime 5:; f ei ka sing—i (m—n)adlx (A23)
J
0

Finally, using the definition
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2
J 1 / ixsina—ilad
1 () = %o e o
0
of the Bessel function Ji(z) of order I, we obtain

i‘mm _ 7:m—nei(m—n)z/_:e-—irne J n(ka) (24)

e



