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Abstract

The purpose of this investigation is to present a differential
equation for the calculation of the compression of a cenirally
loaded straight bar where time is the argument and the com-
pressive stress is a monotonously changing function of time. The
solution of this differential equation is given in the case where
the stress increases linearly. Likewise, the solution of the dif-
fevential equation is given when the stress is constant. The
comparison between the results of the tests performed on bars
of Finnish pinewood and the theoretically caleulated results is
finally presented. The theory set forth in this publication may
be applicable to any material the visco-elastic characteristic of
which likes that of wood, e.¢. to ice (see Sara and OLRRONEN [4]).

1. Introduction

Irreversibility is characteristic of the visco-elastic behaviour of a
material. It is not possible to present the dependency of the strain on
the stress as a single valued function where time is the independent
variable. The corresponding values of the stress and the strain essentially
depend on the stress-strain history.
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Fig. 1. A nonlinear visco-elastic model.

2. Monotonously increasing stress

The nonlinear visco-elastic model presented in Fig. 1 is taken for
the basis of this investigation. This was obtained from the well-known
linear Maxwell—Kelvin model by replacing the linear spring in the
Maxwell unit with a nonlinearly functioning device which gives the
compression for each value of the compression stress o at the time
{ = 0. In Fig. 1 this initial compression has the symbol &,(s) and in
this investigation it is represented by the actual compressive stress-
strain curve of the material in question or by the mathematical expression
corresponding to ib.

The differential equation of the strain in the visco-elastic model
given in Fig. 1 is

t
&(0)
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Here 7 = o = o(t) is a monotonously changing function of time ¢,

e
g,’
&1(0) is the derivative of &,(0) while the dot represents the differentiation
with respect to time.
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3. Linearly increasing stress

Consider ¢ = kf where k is a positive constant. The deformation
law of YrnEN [5, 6] can be used as the mathematical representative of
the initial compression ¢ (o):

1 o
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where F is the modulus of elasticity, o, is the yielding stress and ¢
is a material constant whose numeric value e.g. for Finnish pinewood
is ca. 0.9 (see e.g. SATA [3]).

For the sake of less complicated mathematical calculations the law
presented by NEUBER [2]

1 o

1 — |—
Oy,

was, however, used. Expression (3) may be replaced by the first three
terms of its Taylor series provided that o does not come too near to o,
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Thus the differential equation of the strain in question is

e -f+e=Ar+ (A + B+ 2G4+ (3Ct + G2 4 CP 4 5D« + Dt (5)

when

which with the initial condition ¢ =0 when =0 gives

e = Br(e™" — 1) 4 (A ++ B)t 4 G2 - O3 4 Di® (6)
here A b B k C v D ju d @
where =7 =&, = 2Eo‘§ , = 8EO’; an = 2—’71 .

4. The visco-elastic creep curve caused by constant stress

For the determination of the numeric values of the coefficients X,
7, and %, the differential equation (1) is solved in the case of a constant
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Fig. 2. The visco-elastic creep curve caused by constant stress.

stress, consequently ¢ = o0, and ¢ = 0. Thus a solution with the
initial condition & = ¢, when ¢ = 0 is obtained

— ) f—°t—|—ﬂl —ifz 7
o= el 4 b (e ). ()

Expression (7) could have been directly obtained as a sum of the strains
obtained by the Maxwell unit and the Kelvin unit, respectively. The
graph of equation (7) is shown in Fig. 2. That value of time ¢, which
gives for the expression in parenthesis in the last term of expression (7)
the value 1 — l/e = 0.632, may be held as 7 (see e.g. CarncoTs [1]).

5. Tests with pinewood bars

The creep curve tests with o constant stress: The tests were performed
with compression bars of Finnish pinewood whose specific weight was
0.56, the percentage of moisture ca. 8 and the summerwood content ca.
309%,. The test bars were parallelepipeds with a cross-sectional area of
20 X 20 mm? and with a length of 100 mm. There were altogether 6 test
bars and the modulus of elasticity # and the yielding stress o, were
determined for each bar separately. The test results are given in Table 1.
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Table 1.

Neo | E o, | 1 1/B, T o |
© 1 kpjem? kp/em? | kpfem? | em?[kp h em?{kp h & h
1 |105-10%] 710 550 4.0-107% | 1.09-107¢| 0.5 | 7.0-1073} 5 !
2 1105 600 600 9.6 1.82 1.0 | 8.0 8
3 i 9.3 722 600 8.9 5.9 50 | 7.9 35
4 8.3 700 500 0 5.9 13.0 | 7.1 70
5 8.2 695 450 0 3.3 5.0 6.7 70
6 8.3 720 550 0 3.5 8.0 | 7.5 70

There is reason to observe that for each of the bars numbered 4, 5
and 6 the coefficient 1/n; = 0. This signifies that the asymptote of the
creep curve is parallel to the argument axle for these bars. This appears
to have a connection with the fact that the difference oy — o, for these
bars is greater than that for the bars 1, 2 and 3. In fact this is very self-
evident. May it further be mentioned that ¢, gives the time point at
which the test curve reaches the asymptote at the test accuracy.

The test with a linearly growing stress: For the rate of increase of
the stress the numeric value % = 43 kp/em? in an hour was chosen.
As an arithmetical mean the values 1fy; =0, 7=87 h and
B, = 2.6 - 105 kp/em?, based on the bars N:os 4, 5 and 6, and the values
oy = 690 kp/em? and F = 9.2 - 10* kp/em?, based on all the bars were
used. The compressions caused by the linearly increasing stress in the
bar were calculated from equation (6) for some discrete time values
corresponding to the same range of size as the o-values in Table 1 and
they appear in Table 2 in the column e&. The corresponding test values
& were taken from the test curve. The values of the difference & — &
presented in the last column of Table 2 may show that the accordance
between the theory and the test results is good.

Table 2.

1 (73 & ! &

h Iep/em? 10~ 10* B &

| )

9.3 | 400 59.8 | 58.6 112
10.0 430 659 ; 652 +0.7
10.7 460 72.1 72.5 —0.4
11.4 490 79.4 . 80.2 —0.8
12.1 521 88.0 . 88.9 —0.9
12.8 550 98.5 978 +0.7
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6. Conclusions

Unfortunately the possibilities of the authors in the performance of
the tests were so restricted that e.g. the linearly increasing stress tests
had to be reduced to one single test. Besides, the visco-elastic creep
tests could not be performed with low constant stress values for the
reason that the equipment could only deficiently register so small
compression values. All that must be borne in mind when one takes an
attitude towards our test results.
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