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Abstract

Filtering with & specific method is presented. In using suib-
able chosen symmetric weighting functions, the curve near the
maximum of the Fourier transform will be broadened preserving
better the information of the slow variations of the original
time series.

1. General

Data for scientific and practical purposes are often obtained atb
equal time intervals. As an example meteorological observations may
be mentioned. Data are sometimes rather frregular. To minimize the
effect of occasional variations, averaged values of different kind are
used, see MILNE [2]. Also other filtering methods to eliminate unwanted
irregularities ave used, ¢f. BarnrrT [1], ScHED [3], WieNer [4]. Here
another approach to the problem has been made.

2. The method

The mathematical approach is made by using continuous functions.
Let us assume that the function to be smoothed is f(f) and the cor-
responding weighting function p(f). Then the smoothed function will be
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Nn=/}hma+ﬂdr (1)

The smoothing has lessened the original function by an amount

@) —f) . (2)

To alleviate the general tendency of this effect in f1(®), the amount
(2) is distributed among values around ¢ using the same weight p(¢).

mn=mn+fﬁﬂvw+ﬂ—ﬁw+mm. (3)

This operation can be repeated at will. After the nth step we have

Jull) = fua(®) + /Z)(T) L@+ 7) —fualt -+ 0)lde,n=1,2,3,... (4)

3. The Fourier transforms

To get a better insight into the properties of Eq (4), Fourier transforms
are performed. The function and its Fourier transform are denoted by
small and capital letters respectively. Thus

0

1
Pw) = 5— f e~ (t)dt . (5)

— e

1 [es]
F) = - f e~ f(£)dt . (6)

Then the Fourier transform of f(f) is found from Eq (1).

o

1 [re]
Fi(w) = Py /e”"“” at | p(x)f¢ + ©)dr

or
Fi(w) = 2 5 P(w) F (o) . (7)

Our corrected function (3) has the transform
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1 o0 . oW
Fio) = 5= [ e {f] O+ [ 2@+ ) — 6+ ) dr} ®)

or after simplifications and omitting the argument w
Fo—=4nP —4m2P) F. (9)
This can also be written
F,=[l—(1—2xPPF. (9)’

Repeated calculations suggest that the following general formula may
be valid '

F,=[1—(1—2xPylF. (10)

By induction if is readily shown to be true. When the denotation

On=1—(1—2nPy (11)
is introduced, Eq (10) assumes the simple form
P, =Qul. (10)’
From Eq (11) it is decuced that
=@ =0—0) 0. (1)’

4. Ezamples of weighting funciions and their Fourier transforms

Symmetrical weighting functions are of importance. Therefore our
first choice is

th—1t|

2O = o when , > ¢,
0

=0 , whent, <t (12)

with t, being constant. The Fourier transform is

t

1 o— |2
PO@) = 5~ f 1A

2
7 ty

—t,

which after simplifications and using Eq (11) with » = 1 gives
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‘g wly
o 4 sin ) (13)
)
Ql (w) wztg
This function is plotted in Fig. 1 a.
As an other weighting function we choose
O) =~ o i (12
PN T) = ——F— e ip )’
DV o
e
8 10 2 Wt
R
0.0 = T ] - \I\\ T T
0 1 2 3 4 5 |wd

Fig. 1. Functions @, =@, @ =1— (1 —Q), @ =1 — (1L — Q) are plotted
as functions of |wfy | and |w® | in Figs 1a and 1 b respectively. The quantity
@ represents correspondingly either the value 4 sin *wfy/2) / (wty)? or the value

exp (— 1/2 w?9?).
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with ¢ being constant. This function has the Fourier transform

1 1 7°
PO =——fe"“” — ¢~ 29 AT,
(@) 27 e S/ 2
which after simplifications becomes
i 13y

Q) =e 2.

This function is depicted in Fig. 1 b.

5. Smoothing using a symmetrical weighting funclion

The Fourier transform for a symmetrical function p(t) is

w0

1
= Plw) = Py fcos (wt)p(t)dt . (14)

-0

Qs (w)

27

When o — 0 then the integral on the right hand side = 1 because
of the properties of the weighting function. On the other hand,

o

1 — Qi) = fp(t)[l — cos (wt)] dt

— o0

wt
= 2 fp(t) smz? dt .
Thus for p >0, @ <1. It can also be shown that for » >0,
@r=—1.

In Fig. 1a few of the functions @, ave plotted. Also a curve for
Q, — @, isincluded for both cases treated. This curve shows a maximum,

when @, — 0.5. In general, the maximum is to be found, when

d
5 @ — Q) =0,

1.e., when

1
zlﬁﬁ,
Ql n 1'\/9’1,
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This value tends to zero, when n tends to infinity, i.e. the maximum
effect of the method takes place for the smaller P the larger n is.
This means that the maximum moves toward larger values of |w |
with increasing = .

6. Numerical experiments

In Fig. 2 we have the daily mean temperatures of July 1970 at
Sodankyla*) as a fulldrawn line and the corresponding smoothed values
as & dashed line. The weighting function (12) was replaced by the set

9):3—91”,5:—2,—1,0,1,2. (12)"
The basic property of weights X p; = 1 is thus fulfilled. Periods corres-
ponding to three data are practically damped out, but the main period
of about nine data is maintained almost unchanged.

As another example, we performed the smoothing of daily mean
temperatures for the years 1931 to 1960 computed as means of calendar
days at Ilmala Observatory*), Helsinki, see Hig. 3.

This time the weighting function (12)" was replaced by the set

PP =ce ™™, §=0,41,+2 +3,..., (12)""

with a = 0.002, ¢ = 0.0252. This set satisfies the condition Zp(® = 1.
The choice corresponds to ¢ = 15.8 according to Eq (12)'.

7. Discussion

The amplifications @,, @, ... of our method show a much broader
maximum as the corresponding simple amplification @,, see Fig. 1.
The small positive values of the amplification increase about by the
amount ¢, every time the method (4) is used thus increasing the value
of @n to about n@. If @,, and thus Q. are very small, then the
shifting of the maximum of @. — ¢, toward larger values with increas-
ing n causes the slope of the Q.-curve to become steeper between the

*) All meteorological data published in this paper are callected from archives
of the Finnish Meteorological Institute, Helsinki, Finland.
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Fig. 2. Temperature values at Sodankyld in July 1970 are plotted as a fulldrawn
line and the values are smoothed using the set (12)”.

TFig. 3. Daily mean temperatures for the years 1931—61 computed as mean
of calendar days, at Tlmala Observatory, Helsinki, are indicated by dots. Smoothed
values are found by using the set (12)"” and expressed by a fulldrawn line.



212 S. Uusitalo

named two values, the maximum and the very small @,-value. This
causes the slow variations of the original information to be preserved
rather well. The separation of the slow variation part from the rapid
one becomes better.

8. Conclusions

Using a suitable chosen weighting function, e.g. (12)', it is possible
to increase the filtering of rapid fluctuations from a time series by
repeating the procedure (4), because this cause the main maximum of
@ m (11) to broaden and the separation of its large and small values
to be more distinct. While this effect is still more emphasized, when
using (12) as weighting function, it may not indeed be as advantageous,
because of the side maxima, which grow larger every time Eq (4) is used.

Acknowledgement: The author is greatly indepted to Dr. P. MALKKI
and others for fruitful discussions.
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