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Abstract

Operator spectral decompositions of Rayleigh and Love wave
propagators have been applied to formulate algorithms of implicit
function type to compute the dispersion related quantities, phase and
group velocities, as well as their partial derivatives with respect to the
structural parameters of the plane layered waveguide which models the
crust and upper mantle of the Earth.

1. Introduction

In the inversion of surface wave observations (phase and group velocities), it is
essential to have reliable algorithms to solve the corresponding direct problems,
namely theoretical phase and/or group velocities and their partial derivatives with
respect to the structural parameters of the waveguide.

At present there are many accurate and comparatively fast algorithms to com-
pute phase velocities (see ABO-ZENA (1979) and KENNETT and CLARKE (1983)).
For the computation of group velocities and the relevant partial derivatives with
respect to structural parameters it is possible to choose any of the following
methods:
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1. numerical differentiation;

2. variational and perturbational techniques;

3. implicit function techniques.

Each of these methods, with their merits and shortcomings, has been described
briefly by NovoTrny (1976). '

In this paper we present algorithms of implicit function type to compute the
dispersion related quantities, phase velocities and group velocities, and their partial
derivatives with respect to structural parameters of the waveguide. All the algorithms
are based on the following:

1. the computation of the Rayleigh wave dispersion function and its derivatives
relies on the use of propagators of Abo-Zena type;

2. in both the Rayleigh and the Love cases the vertical propagators are used in
their operator spectral representations.

2. Statement of the dispersion related boundary value problems

The geometry of the underlying waveguide C is presented schematically in fig. 1.
The isotropic, elastic and homogeneous waveguide consists of the layers, G, J=
1,2,...,n, and the halfspace C, +;- The layers are separated by the interfaces I‘]-,

7 = 1,2,...,n. The waveguide C is bounded from above by the free surface T,-

We turn next to the proper formulation of the R- and L-wave boundary value
problems. The considerations presented below are valid for an arbitrary cross-
section S* of the waveguide. Firstly, the equation

R L
ds I;iL R,L )
pr s 2.1)

allows for the propagation of spectral information between any two points of the
cross-section. Secondly, the state vectors take on the form

vZ

R \'s L v

s =| R or s=( T) 2.2)
t, ty
g

depending upon whether we are considering R- or L-waves. In (2.2), v,, Vg and
v are the vertical, radial and transversal components of the velocity spectral
vector. f,, 5 and 4 are, in turn, the corresponding components of the stress
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Fig. 1. Geometry of the waveguide.

R,L
spectral vector. Similarly, the matrix 4 has two meanings, namely

(- 5_2) 1
0 c (1 2 a? pa? 0
1 1 0 L
® 0 0 R L 0B2
A= | and 4 = ) 2.3)
p 0 0 1 p(l—c—z) 0

o Ai-B(-E) - o

in the R- and L-cases, respectively. In (2.3), C is the phase velocity of the surface
wave in question, o is P wave velocity, § is S wave velocity and p is density. Due

R L
to the special geometry of S! the matrices A and 4 should be regarded as layer-
wise constant.
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We still lack the appropriate boundary conditions at Fi’ 7=0,1,2,...,n. These
are stated as follows:
1. Vanishing of the stress spectral vector at the free surface I}, ie.,

Yzlr,
R VRIL L T,
s, = | 18T and ¢ = (1 o) 24
1 II‘0 0 1 II‘0 0 ( )
0

2. Continuity of the state vectors at the interfaces I}-, iLe.,
R R q L L @5)
.= an s, =§ .
i i jally

forj = 1,2,...,n. It should be noted that the notation s, in the expressions (2.4)
and (2.5), means restriction of s to the manifold I'. Further, the subscripts refer
to the various layers of the problem.

3. As a further boundary condition, only waves propagating outward are allowed
in the halfspace below the waveguide.

3. Layer propagators and their operator spectral representations

The layer propagators related to our differential equation (2.1) are solutions
of the following initial value problems

R L
dP RR R R dP _LL L L
iz =AP; P(y)=1 and dz—AP, Py =1

where ;2 and IL are the relevant unit matrices. Layer propagators were introduced
by GILBERT and BACKuUSs (1966). They form an effective way to handle dispersion
related boundary value problems’in 1D situations. In the case of R- and L-wave
boundary value problems, the layer propagators are of the form

27 R 2m L
R i Ad L i Ad
P=¢ " 117 and P=¢ /) 3.1
j j

forj =1,2,..,n. In (3.1), T is the period of oscillation and d is the thickness of
the jth layer. !
In addition to introducing the layer propagators, the purpose of the present
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section is to develop operator spectral representations of these propagators. -
According to KaTo (1966) an operator function f(4) has a representation as the

operator integral
(3.2)

1 .
fA) =5 [ f&) -4y dv
i
%
along the complex contour g4 around the spectrum of A. If the spectrum con-

sists of simple eigenvalues, then (3.2) will take the form,
3.3)

fA) =2 [0,
m
as the residue sum over the eigenvalues of 4. In addition, the eigenprojectorsII,,

are given as the dyadic composition
I, =e, (3.4)
where ¢, m = 1,2,..., are the eigenvectors of 4 and ", m=1,2,.. are the eigen-

vectors of the adjoint operator A7.
Under (3.3), our layer propagators have the eigen representations

R 4 27 R d L 2 2m L d
i— v R I+ v L

_ m s _ T 17

P= % e ™1, and P= % e’ i"il, 3.5

j m=1 Y Y m=1 Y

for j = 1,2,...,n. The actual representation of the eigenvalues as well as the eigen-

vectors are given in Appendix A.

4. Rayleigh and Love wave dispersion functions
The properties of the propagators together with the boundary conditions (2.5)
makes it possible to express the relationship between S, and f”‘o as follows

. .
@.1)

=P and s
|F0 ann

“4.2)
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In (4.1) and (4.2) the use of the »dot» operation follows the usual lines of Gibbsian
dyadic calculus.

We already know that (4.1) and (4.2) satisfy the differential equations and the
boundary conditions (2.5). For complete fulfilment of the boundary conditions
stated in section 2 we are still left with (2.4) as well as the outward propagation
condition. Due to the boundary condition (2.4) we find that

R R, _
flr‘o Ceer f‘ro tete fll‘o and flro a 111, (.3)
where
1 0
R, _ 0 R, . 1 L, _ ( 1)
e =1y R e =1, and e =\ 4.4)
0 0

are Cartesian vectors. The outward propagation condition is seen to be equivalent
to the cancellation of all upward propagating waves in the halfspace. Consequently,

Ry R R, R

e 5. =0 and e -8 =0 4.5
n+l ann n+l ann ( )
for R-waves, and
Ly L
e - S|F =0 (46)
n+l nn
for L-waves.

The conditions (4.1) —(4.6) are equivalent to the original boundary value
problem which was stated in section 2. Combining these expressions we find the
eigenvalue problems

R R R R R R R, R

1 1

e -P-¢' e -P-e" e’ S|p
n+1 n+l 170

=0 (4.7

R, R Ry, R R

2 R 2 R R

e P-¢e' e”-P-e" e SIp
n+1 n+l 170

for R-waves and
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Ll L I L, L
. P . ') ( !, s ) = O .
(nfl e e Sir, (4.8)

for L-waves. The solutions to the above problems depend non-linearly on the eigen-
values ¢ and T and linearly on the eigenvectors. The solvability of (4.7) and (4.8)
with respect to the eigenvectors leads to the dispersion equations

R R R R
e pb el P .o
R n+l n+l
Fe, T; m) = det =0 4.9)
R, R Ry, R
P& p.g
n+l n+l
for R-waves and
L ' Ly L ’
Fle,Trm)= ¢ -P-¢' =0 (4.10)

n+l

for L-waves. The dependence on the structural parameters has been expressed
through the vector

m = (@101 dy 0y b1 P @4.11)

We next develop computational algorithms for evaluation of the dispersion
functions in (4.9) and (4.10). Starting with R-waves, consideration of (4.9)
results in

R R R
F,Timy=6-P- Y-6" @.12)

n+l

In (4.12), we have introduced the new operator

R R Rr R 'R
P- Y=P - Y-P (4.13)
n+l n+l

R
called here the Abo-Zena propagator. Y means the dyadic expression

n+l
R Ry R, Ry, Ry
Y = ¢ e — e e 4.14)
n+l n+l n+l n+l n+l

In the L-wave case corresponding considerations lead to the dispersion function
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L L L L )
Fc,T;m)y=¢'- P+ Y, 4.15)
n+l
where
L L Ly .
P-Y=P - Y (4.16)
n+i n+l
and
L L
n+l n+l

The actual computation of the dispersion functions (4.12) and (4.15) may con-
veniently be carried out iteratively, as follows

R R R L L
Y =1p-Y and Yy = Y (4.18)
i it Y j*1

~. Eb"

for j = n,n-1,...,1. The initial values of the sequences are those given in (4.14)
and (4.17), respectively. After the iterations have been carried out, the dispersion
functions are obtained from

R L L L
Fe,Timy=5.%-8 ad F@ETim=é" Y (4.19)
1

R L
The operator spectral representations of the propagators [P and [P are presented
in Appendix B. ! !

5. T-derivatives of the dispersion functions

We derive now computational algorithms for the evalutions of the partial deri-
vatives of the dispersion functions with respect to the period T. This task has been
accomplished through the differentiation of (4.18) and (4.19) with respect to T,
which results in the iterative sequences

R R R R R L L L L L
Yy, =P -Y+P-Y, ad Y =P Y+ P-Y (5.1
PTG T T iITO T T

for j = n,n-1,...,1 and the evaluations

R R
G T, m) = . Y 6" and E

[
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The initial values of the iteration sequences are those given in (4.14) and (4.17).

R L
The new propagators, IP,T and [B, are presented in Appendix B.

6. c-derivatives of the dispersion functions

In deriving computational algorithms for the c-derivatives of the dispersion
functions it is more straightforward to differentiate the expressions (4.18) and
(4.19). Carrying out the c-differentiations results in the iterative sequences

R R R R R L L L L L
Yy =P - -Y+P-Y, and Yy =P -Y+P-7Y, 6.1)
AL A S A Ot JACEE A S U B 1S b
forj = n,n-1,...,,1, and the evaluations
Betm=8.§ & E e Ty = b1
:c(cr , m) =e 1"’ e and E‘.(c; ’ m) =e - },’C (6‘2)
The initial values for (6.1) are found to be
R R, R, R, R, R, R, R, R;
Y= e, e + e ¢e,— e, € — e e, (6.3)
n+l n+l  n+l n+l np+2 n+l n+l n+l n+l
and
L L
Y, = e, 6.4)
n+l n+1

In (6.3) and (6.4) we need explicit expressions for the c-derivatives of the eigen-
vectors. These are found in Appendix A. In addition, the operator spectral

R L
expressions of the c-propagators [P, and P, needed in (6.1) are to be found in
Appendix B.

7. Partial derivatives of the dispersion functions with respect to structural
parameters

The vectorial expression (4.11) for the structural parameters implies the obvious
correspondence
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o, [=3
S Bi , 1=
4j-1 p] , =1

d]. , 1=0

This simple relationship is extremely useful in understanding the subsequent partial
derivatives expressed in terms of the component My ;.-

A treatment of (4.18) similar to the one carried out in the previous sections
gives us the following types of iterative sequences

R R R L L L
1. Y, =17, and Y, = [P-7 (7.1
L Majr 1 27y 1/mMgiy 1 2 Majy
R- R R L L L
Yp =B Y Y, =P .Y
i m4]-_1 i m4j-l j+1 j 1714i_1 ]'))141'_, j*l
R R R L L L
Y =P Y Y =P+ Y
n n n+1 n n+i
for 1<j<n and 1=0,1,2,3.
2. ¥ B ¥ A ¥ = p. ¥, (1.2)
. = . s an s = . s .
PMagenyr f BTG RIS W B IOV

forj =n,n-1,..,1 and [ = 1,2,3. The derivatives of (4.19) result in the expressions

R R, R R L L L
K cIimy=e'"Y, -e” and F eTymy=e"Y, (7.3)
maj-1 1Majg Maj1 174

forj=1,2,.,n+1 and ! = 0,1,2,3. The initial values of the sequences (7.2) are of
the form

Ry Ry Ry Ry Ry Ry Ry Ry
€,q e+ e e, - e, e — e e, ,1=3
n+l R+l p+l n+l n+1’%+1  n+l %+ n+l n+l n+l-n+l
R R R R R R R R R
1 2 1 2 2 1 2 1
Y, ={ e, e+ e e, - €y e — e e, , 1=2
n+1 Ma@me1)-l | pe1’By+e1 net n+1 n+t Busr ner’ Busr na n+1 n+r Bpey
R Ry, Ry Ry R, R, R, R,
e, e+ e e, - €, e —- e e, ,I=1
n+l Pp+l n+1 n+l n+l Pr+y n+1 P+l pey n+l n+1 Pp+g

(7.4)
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for R-waves and of the form

5
L n+l ﬁl1+]

, = 7.5
n+1M4(n+1)-1 L (75)

e , =1

n+1, Pps+y

for L-waves. The partial derivatives of the eigenvectors with respect to the structural
parameters are given in Appendix A. The expressions for the structural parameter

R L
ropagators, P, and P, , are given in Appendix B.
propag myi g Myt gl pp

8. Phase and group velocities and their derivatives with respect to the structural
parameters

In (4.18) and (4.19) we have algorithms for evaluation of the dispersion
functions. Our next task is to formulate computational algorithms to solve the
dispersion equations

R L
Fe,T;my=0 and F(,T;m)=0

for the phase velocity c. In this paper we have solved the problem numerically
using an algorithm which, for fixed T and m, seeks an approximate value of c.
With this estimate as the initial value, Newton’s iteration method gives the final
value to any specified accuracy. We see that our algorithms give the R- and L-wave
dispersions

R R L L
c=c(T;m) and c =c(T;m)

Having determined the phase velocity dispersion, we turn to the group velocity
dispersion. It is well known that this can be accomplished with the aid od the
formula

L 8.1
Vg(T!m)_cEc___TET 4 ( . )
We have already at our disposal all the algorithms, determination of phase velocities
and the evaluation of the ¢- and 7-derivatives of the dispersion functions, required
to evaluate (8.1). We may therefore regard also the group velocity dispersions



168 Pekka Saastamoinen and Matti Tarvainen

R R L L
vg=vg(T;m) and Vg=vg(T;m) (8.2)

as solved. R L
Our next task is to determine the structural parameter derivatives, D, cand D,c,

of the phase velocities. Differentiation of the implicit functions results in the ex-

pressions

R L
D F D F
D,¢= —=m and D ¢=— Z‘ (8.3)
E E

[4 [

for the derivatives required. In (8.3),

D F =&, .k d D F=(f, .F
o F = ( ’ml"'E”’4(n+1)-1) an = my ’”’4(n+1)»1)’
where the component partial derivatives are of the form

R
F'o‘i , =3 0 , =3
R L

A = an 5 i =

"aj-t E I=1 a1 E =1
’p]_ 3 7p]. 3
R L
F;d]. , I=0 F;d]. s 1=0;]'#=I’l+l

Consequently, according to the results in sections 6 and 7, we have at our disposal
all the necessary algorithms for evaluation of (8.3).

Our final task is to present computable algorithms for the structural parameter
derivative vectors of the R- and L-wave group velocities. Consequently, we have to
compute the following expressions

R R R L
D v,=({ ..v ") and D, v, = (V
m'g g’ml g’m4(n+1)-1 mg g

) (8.4)

v
My
According to Robr et al. (1975) each component of (8.4) is of the form

2
v v v
- & _ £ £
Vg,m]. T (2 c ) Om; — T c,ij (8.5)

We already have the algorithms to compute the quantities c, v, and Com- Conse-
quently, we need only an additional algorithm for the computation of ¢,,, . In
]
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the present article we have achieved this numerically as follows. First the values

Com

) m;

=c,mj|T+ and ¢, ; = c,mle-

are formed at the points
T"=(1+8T ad T =01-8§T,

respectively. In the expressions above § is an increment of numerically small
value. After these preparations we form an estimate of c,,,, 7 as the central dif-
ference approximation !

+ -
c,m]_— Com.

~ )

SmiT =" 8T

Under these conditions we see that (8.5) has, in both R- and L-wave cases, well
defined, computable meaning.

9. Application of the computer algorithms

The algorithms have been prepared as a special library type subroutine package
for the Burroughs B 7800 computer of the University of Helsinki. As an application
of the algorithms, dispersion computations have been carried out using the structural
model of Table 1, which consists of 12 layers and an underlying halfspace. The

Table 1. The structural model used in the computations.

Layer P-wave S-wave Density Layer
velocity velocity thickness
1 5.90 3.33 2.65 2.00
2 6.15 3.50 2.65 1.50
3 6.00 3.40 2.60 3.00
4 6.20 3.71 2.68 13.50
5 6.50 3.54 2.74 12.00
6 7.00 4.12 2.86 3.00
7 6.95 4.09 2.85 4.00
8 7.10 4.10 2.90 8.00
9 7.60 4.39 3.00 10.00
10 8.00 4.70 3.35 13.00
11 8.30 4.80 3.40 25.00
12 8.40 4.85 3.45 25.00
13 8.50 4.91 3.50




170 Pekka Saastamoinen and Matti Tarvainen

results of the computations have been presented in Figs. 2 to 30. The fundamental
and first higher mode phase and group velocities are presented as a function of
period in Figs. 2 and 3, for Rayleigh and Love waves, respectively. Figs. 4 to 30
show the partial derivatives of the dispersion quantities of Figs. 2 and 3 with
respect to the structural parameters. The numbers associated with the curves refer
to the layers given in Table 1. In the figures for the partial derivatives the period
is the independent variable. The plotted quantities are expressed in the usual
dimensions, i.e. velocities in (km/s), densities in (g/cm3), layer thickness in (km)
and period in (s).

4.9
4.7
45
4.3
a1
3.9
3.7

3.5

3.3 20 T 40 ) 60 80

3.1

2.9

Fig. 2. Phase and group velocities of the fundamental and first higher mode Rayleigh waves.
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Fig. 3. Phase and group velocities of the fundamental and first higher mode Love waves.
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Fig. 4. Partial derivatives of the fundamental mode Rayleigh wave phase velocity with respect
to the P velocities of the various layers.
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0.1
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Fig. 5. Partial derivatives of the fundamental mode Rayleigh wave group velocity with respect
to the P velocities of the various layers.
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Fig. 6. Partial derivatives of the first higher mode Rayleigh wave group velocity with respect
to the P velocities of the various layers.
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Fig. 7. Partial derivatives of the fundamental mode Rayleigh wave phase velocity with respect
to the S velocities of the various layers.
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Fig. 8. Partial derivatives of the fundamental mode Rayleigh wave group velocity with respect

to the S velocities of the various layers.
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Fig. 9. Partial derivatives of the fundamental mode Love wave phase velocity with respect

to the S velocities of the various layers.
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Fig. 10. Partial derivatives of the fundamental mode Love wave group velocity with respect
to the S velocities of the various layers.
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Fig. 11. Partial derivatives of the first higher mode Rayleigh wave phase velocity with respect
to the S velocities of the various layers.
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Fig. 12. Partial derivatives of the first higher mode Rayleigh wave group velocity with respect
to the S velocities of the various layers.
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0. 21
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Fig. 13. Partial derivatives of the first higher mode Love wave phase velocity with respect to
the S velocities of the various layers.
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Fig. 14, Partial derivatives of the first higher mode Love wave group velocity with respect to
the S velocities of the various layers.
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Fig. 15. Partial derivatives of the fundamental mode Rayleigh wave phase velocity with respect
to the densities of the various layers.
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Fig. 16. Partial derivatives of the fundamental mode Rayleigh wave group velocity with respect
to the densities of the various layers.
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0 v v + v T —
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Fig. 17. Partial derivatives of the fundamental mode Love wave phase velocity with respect
to the densities of the various layers.
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20 40 i 60 : 80
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Fig. 18. Partial derivatives of the fundamental mode Love wave

group velocity with respect
to the densities of the various layers.
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Fig. 19. Partial derivatives of the first higher mode Rayleigh wave phase velocity with respect
to the densities of the various layers.
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20

~40:
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Fig. 20. Partial derivatives of the first higher mode Rayleigh wave group velocity with respect
to the densities of the various layers.
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Fig. 21. Partial derivatives of the first higher mode Love wave phase velocity with respect to

the densities of the various layers.
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Fig. 22. Partial derivatives of the first hi
densities of the various layers.
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Fig. 23. Partial derivatives of the fundamental mode Rayleigh wave phase velocity with respect
to the thicknesses of the various layers.
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Fig. 24. Partial derivatives of the fundamental mode Rayleigh wave group velocity with respect
to the thicknesses of the various layers.
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Fig. 25. Partial derivatives of the fundamental mode Love wave phase velocity with respect
to the thicknesses of the various layers.
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Fig. 26. Partial derivatives of the fundamental mode Love wave group velocity with respect
to the thicknesses of the various layers.
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Fig. 27. Partial derivatives of the first higher mode Rayleigh wave phase velocity with respect
to the thicknesses of the various layers.
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Fig. 28. Partial derivatives of the first higher mode Rayleigh wave group velocity with respect
to the thicknesses of the various layers.
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Fig. 29. Partial derivatives of the first higher mode Love wave phase velocity with respect to
the thicknesses of the various layers.
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Fig. 30. Partial derivatives of the first higher mode Love wave group velocity with respect to
the thicknesses of the various layers.
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2. Eigenvectors of A and A
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3. c-derivatives of the eigenvectors of A and A"
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L LT
4. c-derivatives of the eigenvectors of A and A
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7. B-derivatives of eigenvectors of A and A"
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9. p-derivatives of eigenvectors of A and ya
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APPENDIX B

R
1. Operator spectral decomposition of P
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L
4. Operator spectral decomposition of IP,p
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R
7. Operator spectral decomposition of P,
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8. Operator spectral decomposition of IIIE, 6
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9. Operator spectral decomposition.of P, 6
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