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Abstract

The low-order Lorenz model for interannual variability is investigated. It is found that the chaotic
behavior is dueto the neglect of the beta effect inthe basis equations. Ifthe beta effect is included the solutions
become periodic.

A six component baroclinic model containing meridional heat transport, but ho momentum transport,
heated in the meridional as well as the zonal plane is analysed. Steady state solutions and their stability are
determined. For sufficiently low meridional forcing we find only stable solutions. Larger meridional forcing
introduces instability provided the zonal forcing by heating is not too large. For large meridional and zonal
heating multiple steady state solutions exist, but one of these is always stable. This stable solution has the
lowest value of the vertical wind shear. Numerical integrations of the nonlinear equations indicate that the
unstable solutions are periodic. The statements above apply to a single wavelength of 5500 km, where one
finds that the resulting waves transport sensible heat from south to north.

The last section of the paper contains an analysis of the model behavior, when the wavelength is
increased to, say 10000 km. While stable steady state solutions exist also in this case, it is characteristic of
all such solutions that they transport sensible heat from north to south contrary to the observed quasi-sta-
tionary waves. A comparison is made with the classical linear studies of the maintenance of the long
permanent waves, and it is shown that the apparent success of these studies is due to the selection of a rather
small meridional scale,

It is demonstrated that the Lorenz model is a special case of the standard two level, quasi-geostrophic
model. The Lorenz-model appears, if assumptions are made relating the parameters of the vertical mean
flow to those of the thermal flow. The assumptions regarding the wave amplitudes result in a baroclinic
wave, where the thermal flow is lagging the vertical mean flow by a quarter of a wavelength. The zonal wind
in the vertical mean flow has to be related to the zonal wind of the thermal flow. In the model used in this
study the relation between the two quantities is obtained from the requirement that the zonal flow is in
equilibrium from an energetical point of view.

1. Introduction

The processes leading to the observed interannual variability in the atmosphere have
not yet been fully apprehended. The main problem is to explain in which way we obtain
a non-periodic response to a primary forcing, which is essentially periodic, since we may
assume with good accuracy that the local diabatic heating due to radiation has a high
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amplitude period of one year. One possibility is that the interannual variability may be
explained as an internal dynamical process. If this is not the case, we are left with the
problem of describing the external processes, which may account for the nature of
interannual variability. A candidate is the El Nio- Southern Oscillation processes, which
would link the interannual variability to the interactions between the atmosphere and the
oceans.

Lorenz (1984 and 1990) has argued that an internal mechanism may be sufficient
to account for interannual variations. The main argument is that the response to the external
forcing in terms of the differential heating between Equator and Pole in an hemisphere is
periodic and therefore non-chaotic as long as the differential heating is below a critical
value, while the response is chaotic, when the differential heating exceeds the critical value.
Since the heating difference seems to be large enough in the winter season and subcritical
during the summer, we should conclude that the atmospheric behavior is chaotic in the
cold and non-chaotic in the warm season. These conclusions are reached after an analysis
of a simple general circulation model having only three orthogonal components. One
component describes the vertical wind shear, while the other two are the amplitudes of the
sine and cosine components of a travelling wave. It is not a straightforward matter to derive
the equations for such a model, but it can be considered as a special case of a six component
version of the classical two level, quasi-geostrophic model. Lorenz (1990) says that his
model equations were obtained in a somewhat ad hoc manner. In any case, the equations
describe supposedly the development of the thermal flow in such a model using only three
components. To obtain the equations in a closed form it is necessary to relate the zonal
component in the vertical mean flow to that of the vertical shear flow and to relate the
wave in the vertical mean flow to the wave in the vertical shear flow.

No unique way exists to satisfy these requirements, but it is clear from the equations
that the thermal wave is lagging the wave in the mean flow by exactly one quarter of a
wavelength in the Lorenz model. A typical wave in the atmosphere behaves differently,
because both the quasi-geostrophic theory and observations agree that a baroclinic wave
may have a large phase difference initially between the two fields, but the phase lag
decreases to smaller values as the wave develops and matures without ever reaching the
state of an equivalent barotropic structure. The relation between the zonal windshear in
the thermal flow and the zonal wind in the vertical mean flow is unstated for the Lorenz
model. Such a relation could be as simple as a proportionality factor, but we shall discuss
and investigate a different approach in the second section of this paper. However, the
assumption should be considered together with the formulation of the boundary layer
dissipation. We note finally that the Lorenz model does not contain a beta effect.

In an earlier paper (Wiin-Nielsen, 1990) the author analysed the response of the six
component model to external forcing which, however, was restricted to differential heating
in the south-north direction only. In that case it was found that to each intensity of the
heating there existed one and only one stable stationary state. These results are not directly
comparable to the Lorenz model, because he includes a differential heating in the west-¢ast
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direction as well, but a series of long term integrations of the six component model
equations with a heating equivalent to the one in the Lorenz model has been carried out.
The results (Wiin-Nielsen, 1991) indicate that all the numerical integrations lead to
solutions which are periodic in time. It has thus been impossible to find chaotic states in
this slightly more general model. These results are in agreement with those obtained by
de Swart (1988), who finds that a minimum number of components of eight are necessary
to obtain chaotic solutions in a two level, quasi-geostrophic model. It would thus appear
that the chaos found by Lorenz in his three component model is somewhat artificial and
is introduced by the assumptions made to reduce the model to very few components. It is
stressed that the investigations reported here will not be able to answer the question: "Can
interannual variability be explained as an internal dynamical response?" The answer will
in the opinion of the author require investigations of models with a higher number of
components. The present understanding is far from clear. From work finished very recently
it has been shown (Kuemmel, 1991) that several chaotic attractors exist in a twelve
component baroclinic model. However, it is also known that chaos in the flow may
disappear with increased resolution indicating that the results from low-order models are
correct for the model, but not applicable to the atmosphere with its many degrees of
freedom. On the other hand, we know that the atmospheric flow is chaotic in the basic
sense that predictions made from two initial states which are different, but close to
eachother will deviate very significantly from each other after a couple of weeks of
integration. It is, however, not known in which way this basic limited predictability of the
atmosphere will influence the climatic state derived by averaging from a long term
integration of a climate model which in a sense should have "forgotten" its initial state.

One of the purposes of this investigation is to explore why chaos appear in the Lorenz
model. This is done by comparing with a modified model having also three components
(section 2), while a second purpose is to make an analysis of the six component model
from a theoretical and a numerical point of view (section 3). Section 4 contains an analysis
of the behavior of the six component baroclinic model, when the wavelength is large. The
special case of zonal heating only is described briefly in section 5, while summary and
conclusions are found in section 6.

2. A modified Lorenz model

Low order models are formulated for certain purposes. When we want to make a
model which could qualify as a simple general circulation model of the atmosphere, it may
beimportant that the model contains the major processes in the dynamics of the atmosphere
albeit in a rudimentary form. For example, the models of Lorenz and the author, mentioned
in the introduction, do not include the meridional transport of momentum by the waves.
Since we know that the momentum transport has a marked influence on the structure of
the zonal wind, one could argue that it ought to be represented in the model. On the other
hand, this conversion from the eddy kinetic to the zonal kinetic energy is a relatively minor



16 A. Wiin-Nielsen

contribution to the energetics of the atmosphere. However, while the kinetic energy transfer
from the eddies to the zonal current according to observational studies is positive most of
the time, it may reverse its sign during periods of major blocking pattern in the Northern
Hemisphere as shown by Wiin-Nielsen et al. (1964). It appears therefore that it would be
worth while to investigate models in which the momentum transport is present. It is,
however, known that the minimum number of components in a model satisfying these
requirements is twelve, and in that case it appears out of the question to rely on anything
but long term numerical integrations.

From an energetical point of view the Lorenz model has generations of zonal and
eddy potential energy by the heating imposed on the model. The heat transport by the
eddies will result in an energy conversion between the eddies and the zonal baroclinic
component (the shear flow or the thermal flow) in a two level model. In the real atmosphere
there is also an energy conversion from the baroclinic to the barotropic component (the
vertical mean flow). The latter conversion will also be present in the Lorenz model, because
the vertical mean flow will have to be related in some fashion to the vertical shear flow.
A simple proportionality factor may be too crude, because the structure of the atmosphere
may change significantly during the developments. To be specific we reproduce the
equations for the six component model. They may be written in the form:

dB
* e e By
dr el 2B7)

daB
7T= - 4ap (E*FT—ETF,..) +é (B,.. - ZBT) —eTBT+ ngz

d—dEf = (a,B, — bJ)F, + a.BiFr — e(E\ - 2E7)

dF,
dt

= —(a.B. - b.)E, — a.BrEr — e(F\ — 2Fy)

dE;
7T = (aTB* - bT)FT — CuBrF. + el(E* - ZET) —-exfr+ ger

dF
T;:T = — (agB, — bp)Er + CuBrEs + €(Fy — 2Fr) — e2Fr + g0 6

The dependent variables in (1) are the velocity components By Br, E«, Fs, Erand
Fr, and they are in turn defined through the following specification of the streamfunction
of the vertical mean flow:

Yo = —g;: sin(2\y) + % sin(Ay)sin(kx) + Ek'fsin()»y)cos(kx) (¥3)
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with an analogous expression for the thermal streamfunction. The various coefficients in
(1) are defined by the expressions:
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A number of constants enter the problem. The numerical values and definitions are
listed below:

q2 =225 x 107 %m™2

k=2mn/L;L = 5.5 x 10%m

A=s/W,W=1.0x 10"m

fo=1.0x107%"!

B=1.6x10"lm s

« = R/c, = 0.286

g=2.0x 100"

er=12x107%"1 @

We shall next look at the problem of obtaining a three component system from the
three equations describing the thermal flow. Whenever a quantity relating to the vertical
mean flow appears in the system (1), it must be related to the thermal flow. The quantity
(E+Fr- ErF+) appearing in the first equation in the system (1) is a measure of the sensible
heat transport in the model. We shall follow Lorenz and define Ex = Frand Fs= -Ep,
which corresponds to a wave where the thermal flow is lagging the vertical mean flow by
one quarter of a wavelength. Other assumptions could be made by adding a factor less than
unity to these relations, but it would not change the fact that the thermal flow is "frozen"
with a constant phaselag relative to the vertical mean flow.

The other quantity which needs to be replaced is the zonal component Bx. One could
for example set B« = 2B, but in that case we notice from the equations that the influence
of the planetary boundary layer would be eliminated. In the modified Lorenz model we
shall proceed to determine B« in such a way that the vertical mean flow is balanced from
an energetical point of view. This means that we equate the energy conversion from the
baroclinic flow with the dissipation of the kinetic energy of the vertical mean flow. For
this purpose it is convenient to divide the total energy in the model in two parts. One part
will be the total energy E, in the baroclinic flow. It consists of the available potential energy
and the kinetic energy of the baroclinic component. The other part is the kinetic energy of
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the barotropic flow. A calculation of the energy conversion between these two parts in the
model leads to the result that

C(E,K.) = dB{E.F1—E7F.) ®
where the constant d has the value

P32
% ©)

d=

The dissipation of the kinetic energy of the vertical mean flow is

2
DIK.) - & 2(52-28,B.) + N(E#‘“F%) 0

where the relations between the wave amplitudes have been introduced already. Equating
the two expressions in (6) and (7) it is seen that we obtain a quadratic equation from which
we may obtain B« from Br, Er and Fr provided real solutions exist to the equation. Such
solutions will not exist in all cases, but it is easy to see that they will exist if Bris sufficiently
large. In view of these considerations we have a model in which the zonal component of
the vertical mean flow may change during the time integrations, since it can be computed
in every time step.

Integrations of the model equations for the modified Lorenz model have been carried
out for a large number of cases, where Q, has been varied from small to large values, while
the value of Q. has been kept constant in each series. The maximum value of Q, was 3.0 x
102 kIr's™, which is somewhat larger than the value computed by Lawniczak (1970) for
the months of January and the results of the study carried out by Schaack et al. (1990) on
the basis of data from the Global Weather Experiment. It also appears that the selected
maximum value is too large for atmospheric conditions because the generation of available
potential energy for the maximum case is considerably larger than observational values.
For all integrations it can be said that they eventually lead to periodic oscillations. We shall
demonstrate a single case, and we have selected Q, = 2.0 x 102 k7t st and 0:.=1.0x 107
kiets™, Fig. 1 shows the variation of the two zonal windcomponents, the change in the
generation, the conversion and the dissipation of the thermal energy, and the imbalance of
these three quantities during a period. The selected period is well into a long term
integration after the influence of the initial state has disappeared. We note that the change
of the zonal winds is rather small being less than 0.5 m 5. The same may be said about
the energetical quantities, where the total variation is less than 0.5 Wm ™. The total thermal
energy is not in complete balance, but the difference between input and output in the

thermal energy goes through a periodic change with an amplitude of almost 0.2 Wm?.
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Fig. 1. The periodic behavior of a single integration with 0; = 2.0 x 103 k7¢ s and Q. =1.0x 102 o7 1
s~ The figure contains the two zonal winds as the two upper figures fo the left, while the three figures in
the right column show the generation, the conversion and the dissipation in the unit W m™. The lower left
figure is the imbalance of the thermal energy. All figures show the variation over one period.

We may thus conclude that the experiments, which have been performed, do not
lead to a chaotic state for the modified Lorenz model, when the intensity of the forcing is
kept within a range, which could occur in the atmosphere. An investigation of the steady
states of the modified Lorenz model has been done, and the stability of these states has
been determined. The main result is that all the steady states are unstable, and that at least
one of the eigenvalues of the unstable steady states indicate an oscillatory mode. These
results are in agreement with the behavior of the numerical integrations, because they lead
to a "limit-cycle" in the threedimensional phase space.

The integrations have been carried out for sufficiently large values of Q.. We may
see this by inspecting Fig. 2, where the generation of the thermal energy is shown as a
function of Q. The figure shows that the generation for the largest values of the zonal
heating is well above any estimate from data studies. In view of the results obtained with
the modified Lorenz model showing only periodic solutions, one may ask why it does not
contain chaotic solutions. A possibility could be that the special way of calculating the
zonal part of the vertical mean wind account for the different behavior of the two models,
but this is not the case. It turns out that the quantity B« for reasonably large values of Q,
is almost twice the value of Br. An integration of the equations for the modified model
with B, = 2 Br (i.e. as in the Lorenz model) gives also only periodic solutions. We may
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thus conclude that the only difference between the two models is the inclusion of the beta
effect in the modified model, while Lorenz did not include it in his three component model.
When the modified model is brought into the form of the Lorenz model, we geta result as
shown in Fig. 3, where the integration was carried out with Q, = 3.0 x 102 ket s Fig.
3 shows that the solution has become irregular and non-periodic, although it appears to
have a periodic envelope. In Fig. 3 we have plotted the generation of thermal energy as a
function of time, but only the values which are two hours apart has been included. The
same information is given in Fig. 4, where we have plotted the maximum and minimum
values. The extrema are situated with a time interval of about 3.375 hours.

The main conclusion is therefore that the well known stabilizing effects of the beta
terms are responsible for the periodic behavior of the modified model. We may investigate
the typical time scales involved in the modified model by considering the zonal windcom-
ponents as constant, neglecting the forcing and dissipation and thereby linearizing the
problem. We consider therefore the last two equations in the system (1). It should be noted
that the terms containing the factor ¢; and normally considered as part of the frictional
terms actually work as a reduction of the beta effect in the modified model, and these terms
will therefore be included in the calculations. With these remarks we may write the
linearized equations in the following form:

aw

TE = (az-iotl)W (8)

where W = Er + i Fr, and where the coefficients are defined by
o) = aTB,. —bT+ ex
Oy = C,,,Bg‘ (9)

The solutjon of (8) is straightforward. o determines the frequency or the period of
the oscillation. Using the same constants as before and setting B+ = 22 m s taken as a
typical value from the integrations with rather large values of Q, we find that the period
! we find an
e-folding time of 5.4 days. These values are in good agreement with the actual integrations
of the nonlinear equations. On the other hand, if we disregard those terms, which are not
included in the Lorenz model, the corresponding period of oscillation is 6.5 days, while
the e-folding time becomes the same, but these numbers are rather meaningless because

become 10.4 days. o, is a measure of the growth rate. With By = 11 m s

the zonal winds varies a great deal in the Lorenz integrations as seen from his paper (1990).

The comparative study indicates that the chaotic behavior of the original Lorenz
model is due to the neglect of the beta-terms in the equations. It would thus appear that
the model produces a chaos, which we are unlikely to observe in the atmosphere.
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Fig. 2. The generation of the thermal energy as a function of the meridional heating.
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Fig. 3. The generation of the thermal energy for a one hundred day interval well into a long term integration
forQ,=3.0x10% &7 1! sl Data points are plotted with an interval of 2 days. Beta-effect is not included.
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Fig. 4. The exireme values of the generation plotted as a function of the number of extrema in the record.
The period is approximately 3.75 days. Beta-effect is not included.

3. The six component model

In the present section we shall present a brief analysis of the six component model.
In the case of zonal forcing only the model has already been treated by the author (1990)
with the result that a stable steady state exists for each value of the zonal forcing. With no
heating in the west-east direction it turns out that the four equations for the eddy
components can be replaced by another set of equations expressing the rate of change of
quantities which are proportional to 1) the heat transport by the waves, 2) the kinetic
energies of the thermal flow and 3) the vertical mean flow and 4) another transport quantity
which is proportional to the transport (v« vr), , where v is the meridional wind component
and the subscipt z refers to a zonal average. The inclusion of the heating in the west-east
direction prevents the use of the technique mentioned above. The more general six
component mode] is therefore more cumbersome to deal with.

The full system of equations for the six component model is the system (1). We
note that in the present model we have adopted the assumption that the quantities at the
lowest level can be obtained by linear extrapolation from above. These six equations may
be integrated in time by selecting a time-differencing scheme. Such integrations using the
Heun scheme will be presented later in this section. As this scheme may be unstable for
too large time steps, we have repeated some of the integrations with lower timesteps to be
sure that no instability has occured.

The steady states of the model may be obtained by observing first that a steady state
requires that B+ = 2 Br as seen from the first equation in (1), which is very simple in the
present model, because then the selected waves do not transport eddy momentum. The
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next step is to set the four time-derivatives equal to zero in the equations for the
development of the eddy quantities. These four equations are linear in E+, Fx Er and Fr
and may be solved for these quantities in terms of By, Q. and Q.. To ease the calculations
it is an advantage to introduce the following notations:

P0=a‘BT P1=2a*Br—b* Py=Py+ 2P,
Ro=cr Ri=2arBr-br R2=2Rp+ Ry (10)

After considerable calculations it turns out that the four amplitudes of the wave
components can be written in the forms:

E. = 8.0(2¢4R; + RoPoP; + €0e3Ps — RyPoPy)/D
F, =—g.0.(eoR P> + e2PoPy + €,PoPp + Zegez)/D

Er = g.0:(€2Rz - RoP\P; + ece Pz + RyPD)ID

Fr = g.0c(€oRoP; + €2P} + e\P\P2 + eie2)/D 11
where D is defined by
D = (RoPy ~ RoP)* + (e1P2 + 3P1)” + €3(c5 + R3) + 2eoP(eaRo + €1R2) (12)

The next task is to compute the quantity, which is a measure of the heat transport,
i.e. T = Ex Fr- Er F+. We get

22
T=—egegc oP2 13

The final step is to insert the expression for T'in the second equation of the system
(2.1) with the result that

D
— 5 (8L - erBr) 14)
aoeog>P;

02~

Equation (14) is formally an equation of the fifth degree, but we are interested only
in the real roots of the equation. These may be visualized graphically by calculating Q. as
a function of By for selected values of Q.. In this regard we notice that the left hand side
of the equation is positive. Since it can be shown that D is positive in the area of interest,
it follows that in the region, where P; is positive, i.e.

Br>or (15)
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we must also require that the other factor on the right hand side of (14) is positive giving
the condition

2

Br<
< fo 47\.8

v (16)
On the other hand, if P; is negative we should reverse the inequality signs in (15)

and (16). With the value which we have used for the wavelength (5500 km) we find that
(15) and (16) in numerical terms may be combined to

12.735 < By < 4.26730), an

where the unit of the heating term is 10% &7 71 5. From (17) it is seen that the two cases
are separated by é, =3,

Fig. 5 shows two examples of the graphical representation for small values of the
zonal heating ( @, = 1 for the left figure and 2 for the right figure). The asymptote for the
larger values of the vertical wind shear represents the position, where P, becomes zero.
We recall that the curves really are symmetric around the horizontal axis, because both +
and - are present, when we solve for the west-east heating. The curves are monotonic giving
a single solution for each value of the west-east heating,
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Fig. 5 'I’he zonal heating as a function of the zonal windshear under steady state conditions. Q,=1.0 x 10>

k£ 57 for the left figure, while it is twice as large for the right figure. Note that only one steady state value
is found in these cases.
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In Fig. 6 we show an example for a moderate value of the zonal heating (@l =4).
The curve has the asymptote to the left for the smaller values of the vertical wind shear.
It has also a minimum and a maximum indicating that three solutions exist within a certain
interval of the west-east heating. In this regard the curve is very similar to the analogous
curve for the Lorenz model. We note that the triple solutions can be obtained for moderate
values of the west-east heating. Fig. 7 displays a more extreme case, where the zonal
heating is rather large (éz = 10). The curve has the same characteristics as in Fig. 6, but
the scale has been changed in such a way that it is now 10 times larger. Three solutions
will be present except when the west-east heating is rather small. One of these will in the
present examples have a value slightly larger than 10 m s, while the other solutions will
have a much larger value of the vertical wind shear. In the case of Fig. 7 the largest solution
would be out of the normal atmospheric range.

, 1073 kyt=1 471

Q
a

Fig. 6. Similar to Fig. 5, but with Q,=4.0x 102 k711 57 Note, that three steady siates exist for a sufficiently
large value of Q.

A numerical solution of the equation for the steady state values of the vertical wind
shear is naturally also possible. Such solutions have been obtained in various cases. Fig.

8 shows an example for Q, = 5 x 103kt 57, The steady state value of the vertical wind
shear is given as a function of the west-east heating. For a number of cases we have
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determined the stability of the steady state. The sections containing unstable solutions are
marked with the letter: U, while stable sections are marked by: S. Fig. 8 shows thus that
the large and the intermediate values of the vertical wind shear represent unstable solutions,
while the small values are stable solutions. The same pattern can be seen in Fig. 9, which

is drawn for the larger value Q, = 8.0 x 1073, Fig. 10 contains a general view of the steady
states and their stability as a function of the south-north and west-east heating. The diagram
shows three regions: A lower region for small values of the south-north heating, where
stable solutions exists, an intermediate region, where each point has three stationary states,
of which two are unstable and one is stable, and finally a region of instability for large
values of the south-north heating. The west-east heating has a stabilizing effect in such a
way that sufficiently large values of it will change an unstable solution to a stable one. The
main purpose of these figures is to illustrate the properties of the model, although it is
realized that the parameter space goes beyond the observed values.

1072 Ky~ 41

q..

60
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Fig. 7. Similar to Fig. 6, but with Q,=1.0x 102/ ¢! 5L,
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Fig. 8. The steady state values of the zonal vertical windshear as a function of the zonal heating for Q.=
state value.

5.0x10” &7 1 5L, The letters U and S on the various parts of the curve indicate the stability of the steady
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Fig. 9. Similar to Fig. 8, but with Q. = 8.0 x 10> &7 ¢! 571
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Fig. 10. An overview of the stability properties of the six component model as a function of Q. and Q. For
small values of the meridional heating there is stability for all values of the zonal heating. Instability exists
for larger values of the meridional heating provided the zonal heating is not too large. Three solutions (one
stable and two unstable) exist for large values of Q. and moderate values of Q.

Although examples of the numerical integrations of the nonlinear equations have
been given in an earlier paper (Wiin-Nielsen, 1991), we include a couple of new examples
here. Fig. 11 shows a case of moderately large zonal heating, but small west-east heating.
The transport of heat is shown in the upper part of the figure over one period. The middle
part displays the eddy thermal kinetic energy, which is almost exactly in phase with the
heat transport. The lower part of the figure indicates that the eddy kinetic energy of the
vertical mean flow has its maximum about 2 days later than the maximum in the thermal
kinetic energy. An extreme case is shown in Fig. 12 where the zonal heating is set at a very
high value. We note the same characteristics as in the previous figure, although the time
lags are somewhat larger in the latter case. However, the eddy kinetic energies have now

reached a level, which are considerably larger than than those calculated from observa-
tions.
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Fig. 11. The heat transport, the thermal kinetic energy and the kinetic energy of the vertical mean flow as a
function of time for one period with Q, = 8.0 x 10™ kJ !5t and Q:=10x 103 &7 r* 571, Note that the

maximum of the kinetic energy of the vertical mean flow occurs about 2 days later than the maximum in the
thermal kinetic energy.
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Fig. 12. The same arrangement as in Fig. 11, but with 0, = 3.0 x 102 &7 1 5!, while Qc has the same value.
For this large value of the meridional heating one gets a larger displacement of the maxima, but the values
of the kinetic energies are unacceptably large. The periodicity is, however, maintained.
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4. The problem of long stationary waves

The calculations in the previous sections have used a horizontal wavelength in the
baroclinically unstable zone. It is of interest to explore whether or not the present nonlinear
model can be used to provide a relatively simple theory of the existence of the long
quasi-stationary waves in the atmosphere. The classical papers on this subject are the study
of stationary waves as influenced by topography by Charney and Eliassen (1949) and
Smagorinsky’s (1953) investigation of the long wave response to heat sources in the
west-east direction. A further study of the combined effect of the two sources were carried
out by Derome and Wiin-Nielsen (1971), which contains an extensive list of references to
other investigations of the problem of the quasi-stationary long atmospheric waves. The
theoretical studies of the problem have used a linear approach. A common assumption in
all the studies is that the zonal circulation is maintained in some way by physical processes.
To linearize the equations it is therefore considered permissible to adopt observed zonal
winds in the advection terms in the equations. A more complete theory would specify the
topography and heating fields and would provide a calculation of both the zonally averaged
quantities and the structure and position of the waves. While this goal can be accomplished
to a large extent by the present general circulation models of the atmosphere, we do not
to the knowledge of the author possess a low order, nonlinear, analytical model which can
describe both the zonal circulation and the existence, structure and position of the long
stationary waves, where the orders of magnitude of the various quantities are correct, and
where the structures are modeled essentially correctly however schematic they may be.
While this section will not provide a solution to the problem, it will be possible to see
rather easily why the present model will not suffice.

One may of course also point out that the very long waves in the atmosphere, in
addition to heating and orography, are influenced by the nonlinear transfer of energy from
the transient waves which therefore to a certain degree determine the intensity and position
of the very long, quasi-stationary waves. In addition, the iransient waves are responsible
for a part of the meridional transport of sensible heat and momentum, which in tumn
influences the zonal current. If these processes shall be included one must require either a
high order model or a good parameterization of the transport processes.

The first clue for the present model is obtained from (15). The solutions for the
smaller value of the wavelength were obtained for positive values of P,, but such solutions
are out of the question, when a characteristic wavelength, say 10000 km, is used for the
long waves. (16) would have to be satisfied to have P, > 0 giving a value of By > 128 m st
The only possibility is then to seek solutions, where P; < 0, but since the right hand side
of (15) needs to be positive, we must also require that

By > 8% (18)
er
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which corresponds to (17) when the inequality sign is changed. The considerations can be
summarized in the following inequality, where we use the values quoted above:

426730, < Br < 128 19

(19) shows that even moderately large values of é, will lead to values of the vertical
windshear, which are large compared to the observed values. A typical value of the
windshear at 30 Nis By = 15m s '1, which would require that Q, < 3.5. Steady state
solutions satisfying (19) have been calculated, and a stability investigation of these
solutions show that they are stable. However, as we can see from (14) they will have a heat
transport which is negative, since P; < 0 for these solutions. The negative value of the heat
transport indicates a vertical slope of the waves from west to east contrary to the observed
slope. We are thus forced to conclude that the present low-order model is unsuitable for a
calculation of the properties of the long quasi-stationary waves. It was of course checked
that D is positive also in the case of the longer waves. We note finally that if we use values
of the west-east heating which give acceptable values of the windshear, we get a much too
small value of the amplitudes of the long waves.

In view of the negative results described above from a nonlinear low-order model it
may be of interest to compare with the apparently more successful earlier studies. There
are large differences in the formulations. We may compare with the study by Derome and
Wiin-Nielsen (1971) which included forcing by topography and heating and dissipation
by friction. The study is first of all linear, because the strength of the zonal circulation is
prescribed. It means that there are elements of the advection of vorticity in both the vertical
mean flow and in the vertical shear flow. These processes are excluded in the low-order,
nonlinear model. The two models are similar in geometry, both of them employing a beta
plane channel. However, it is known that the linear studies are sensitive to the width of the
channel as pointed out by Derome (1968) who in addition to a channel width of 30 degrees
latitudes used in the main part of the investigation made test calculations using wider
channels. The results deteriorate noticeably when the width is increased to for example 50
degrees of latitude. It is thus possible that the apparent success is due to the choice of a
narrow channel, which was selected by Smagorinsky (1953) as well. In the following we
shall give an example which clearly indicates that the linear studies fail to give qualitatively
correct results when wider channels are used.

In the example we use essentially the same two level model as the one adopted by
Derome and Wiin-Nielsen (1971). We prescribe the zonal winds as constants with values
taken from observations. The eddy streamfunctions are given in a form identical to the
wave part of (2) and the corresponding expression for the the eddy streamfunction of the
vertical mean flow. As in the remaining part of this study we shall disregard the effect of
mountains and prescribe the heating in the same form as previously. The steady state
equations may then be written in the form:
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ayE. + ayoFy + BrEr - 2a12Fr =0

—a1E«+ a1 Fu + 2a12FE7 + BrFr=0

apkby + anF. - 2a1FEr + auFr=0

axnkE. — ayoF . + asEr + 2a1, 0 Hy (20

where the coefficients have the following definitions:

a11=B,—ﬁ £112=E n=l€2+7\.2
n k
2 2
R
a32=(1—g}l31‘ 034=a11+q7l3* H0=Zq,JToH

The symbols have the same meaning as in the other sections. It is seen that by adding
the first and the fourth equation in the above system we get a single equation in E+ and Er.
The same procedure applied to the second and the third equation gives an equation in the
remaining two variables. Solving for the variables related to the vertical mean flow we

get:
E. = (Ho - (Br + as4)E7) /(a1 + as)
Fy =~ (Br+as) fay + as,) (21)
From these two equations we obtain the following expression for the heat transport:

FrHy

T=EJFr—EfFe=—""—
app +4asz

@2
When we finally solve for Er and Fr and substitute in the expression for the heat
transport we get:

2

H
T= Eg a12(2a11 + BT) (23)

where Dy is defined by

Do = aty(2a1, + 2as + s + Br)* + (103 — axBr)? 24
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From (23) we can make the observation that T is positive provided the quantity in
the parenthesis is positive, since Dy according to (24) and a;, according to its definition
are positive quantities. T is thus positive if the inequality

2 2p
k2+)\. >m (25)

is satisfied. Suppose first that we consider the width to be the distance from pole to equator
as we have used it in the previous section. With B+ =15m st and Br =5 m s, which
will be used also in the following examples, we find that (25) will be satisfied provided
the wavelength is smaller than 7000 km, which hardly is useful in treating the long
quasi-stationary waves. If we on the other hand consider the width adopted by Derome
and Wiin-Nielsen (1971) (30 deg. of latitude) we find that (25) is satisfied provided the
wavelength is smaller than 58000 km, which is one of the reasons that the model gives
reasonable results. However, we can also see that the good behavior of the model will
vanish if we select a wider channel. Suppose that we take the wavelength to be 10000 km
wefind from (25) thatit is satisfied only if the width is less than 4360 km which corresponds
to about 39 deg. of latitudes. The present example shows therefore why it has been
necessary to select a channel width which is small. Otherwise the heat transport will be
negative.

5. The case of zonal forcing

Aspecial case of the present model was considered in a previous study (Wiin-Nielsen,
1990). The mode! was in that case restricted to zonal heating, i.e. Q. = 0, which means that
the four equations for the rate of change of the amplitudes (see the last two equations in
(1) and (10)), respectively, become a set of homogeneous equations in the amplitudes in
the case of stationary solutions. In that case one may solve the four equations for the steady
state amplitudes in terms of the steady state value of the zonal windshear, compute the
heat transport, and finally solve for the steady state value of By, noting that Bs = 2 By. If
such steady state solutions exist, they will contain both a zonal current and a wave. Another
possible sieady state is purely zonal, and in that case the values of the two parameters
describing the zonal winds are directly related to the zonal value of the heating, i.e. to Q..

In deriving the formulas for the coefficients in the equations in the former investi-
gation a mistake was made in the value for a«. It is thus pertinent to ask if the mistake had
any major influence on the results of the study. The calculations of all steady states and
their stability have therefore been repeated using the procedures described above (and in
more detail in Wiin-Nielsen, 1990). Fortunately it may be stated that only minor modifi-
cations of the numerical values were found, while the main results remain unaltered, It
should be noted that the assumptions in the earlier and the present model are not quite the
same. The difference is in the assumptions made in computing the surface values of wind
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and vorticity. In the former study it was assumed that the surface value was half of the
value at level 3 (750 hPa), while the present study has assumed that the surface value may
be obtained by linear extrapolation in such a way that By = B+ - 2 By, where By is the value
at 1000 hPa (close to the surface).

To illustrate the main result with the present model Fig. 13 has been prepared.
Considering first the purely zonal steady states the result is that all steady states are stable
except those located inside the curve on the figure. The curve is therefore as usual the curve
of neutral stability. On the other hand, for the steady states containing both a zonal flow
and a wave the outcome is that all steady states inside the curve on Fig. 13 are stable. The
steady states outside the curve are in the latter case actually the unphysical states, which
have negative kinetic energies. Such solutions appear because we have expressed the
equations in terms of the transports and energies, which are second order quantities. In any
case, it is found that all the unphysical states are unstable. We may thus maintain the main
conclusion of the first study that a stable steady state exists for each point in the diagram.
Inside the curve the steady state contain a wave, but outside the curve the steady state is
zonal. Each point in the diagram is determined by the values of the wavelength and the
zonal heating. It should be stressed that although the figure is similar to the standard
stability diagram obtained from considering the stability of a prescribed zonal flow with
an adiabatic and frictionless model, the present diagram cannot be converted to the same
form, because the zonal wind speeds are determined in different ways depending on the
the steady states.

Fig. 13 was prepared using the standard values of the parameters as given in the list
in section 2 under (4). The numerical values leading to the curve in Fig, 13 will change if
the parameter values are varied. Fig. 14 shows the result, if the numerical values of the
two parameters determining the friction in the model were half as large as the standard
values given in (4). We notice that while the curve occupies the same position in the
wavelength coordinate, its minimum value is lower in Fig. 14 than in Fig.13. A complete
parameter study has not been carried out.

'The study described in this section may be considered as an extension of the classical
investigations of the stability of a zonal current albeit in the case of a two level,
quasi-geostrophic model. In these classical investigations one has to assume that the zonal
current is maintained by the processes of heating and friction. In the present study the zonal
current is created by these processes.
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Fig. 13. The curve is the neutral curve for the case of zonal heating only in a coordinate system with the
wavelength and the zonal heating along the axes. £ =2 x 1095t and er= 1.2 x 10°%L,
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Fig. 14. Same arrangement as in Fig. 13, but with values of the two frictional values decreased to half the
values.
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6. Summary and concluding remarks

The investigation has shown that the chaotic behavior of Lorenz’ low-order general
circulation model disappears, when the beta-effect is added to the model. Since the effects
of the Coriolis force are important in all large scale motion in the atmosphere, it is unlikely
that the annual variability inherent in the Lorenz model has a counterpart in the real
atmosphere.

The Lorenz model can be considered as a very special case of a low-order two level,
quasi-geostrophic model. To obtain the Lorenz model from a model with six dependent
variables, it is necessary to use the three equations which describe the thermal properties
of the model. In addition, it is also required to specify some relation between the three
variables describing the vertical mean flow and the three related to the thermal flow. It is
demonstrated that the assumptions made by Lorenz regarding the waves are equivalent to
assuming that the thermal wave is lagging the mean flow wave by a quarter of a wavelength.
The relation between the zonal wind in the vertical mean flow and the vertical shear flow
is quite open. The model used in this paper calculates the zonal wind in the vertical mean
flow in such a way that the vertical mean flow is in balance from an energetical point of
view, i.e. there is a balance between the energy conversion from the thermal energy to the
verical mean flow and the frictional dissipation of this flow. It turns out that this ad hoc
parameterization leads to a strength of the vertical mean flow of nearly twice the strength
of the vertical shear flow, when the heating is rather large.

The model with six dependent variables is analysed in detail. It contains a heating
in the south-north as well as the west-east directions. Internal friction as well as friction in
the planetary boundary layer are included. A procedure to calculate all the stationary states
of the nonlinear model is found. The stability of the stationary states is investigated. It
turns out that the stationary states are stable for sufficiently small values of the meridional
heating. For larger values of the meridional heating we find a single unstable stationary
state as long the west-east heating is reasonably small, but for large values of the west-cast
heating we have three stationary states of which one is stable, namely the one with the
smallest value of the zonal vertical windshear. Numerical integrations of the six equations
indicate periodic solutions in the unstable cases, but an asymptotic single steady state,
whenever a stable solution is present.

All the considerations summarized above deal with a single longitudinal wavelength
of 5500 km. In the last section we explore the behavior of the model for a wavelength,
which corresponds to the long planetary waves, say 10000 km. We find also in this case
the stationary states, and they are all stable. It turns out, however, that most of them are
characterized by a negative, i.e. north to south, heat transport indicating a vertical slope
from west to east for increasing altitudes. Such a structure is opposite to the observed
structure of the longer planetary waves. The nonlinear model is compared with the
seemingly more successful linear models, in which the zonal wind fields are prescribed
from observations. By selecting a relatively simple example, in which only the heating in
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the west-east direction, but not the topographical effects are included, it is possible to show
that the success of such a model is due to a selection of an unrealistically narrow channel
on the beta plane. If the width of the channel is increased, we find that also in this case we
obtain a negative transport of sensible heat.

One may naturally speculate on what the requirements are, if a low order model
should be able to have stationary stable solutions which are at least qualitatively correct
for the long waves. The only nonlinear interaction between the zonal flow and the eddies
in the six component model is the fransport of sensible heat by the waves. Since the
divergence of the eddy momentum transport determines the shape of the zonal currents, it
is likely that the low order model should be expanded to include the momentum transport.
It is known that such a model requires a minimum of 12 components. Another possibility
is to parameterize both the transport of sensible heat and of momentum. This has been
done by Wiin-Nielsen (1988). However, considering only explicit low-order models we
cannot be sure that such a model is sufficient. Another possibility is that it will be required
to include the interaction between the transient baroclinic waves and the long quasi-sta-
tionary waves in order to account for the position and structure of the long quasi-stationary
waves. This interaction requires either the inclusion of a large number of components, in
which case we would have a fully developed general circulation model, or a successful
procedure for the parameterization of the effects of the transient waves in terms of the
quasi-stationary long waves. However, such a procedure is unknown at present.
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